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Abstract. One of challenges for researchers in smart grids is to find
mechanisms for putting orders on the electricity wholesale market. This
paper tackles this problem by proposing adaptive bidding mechanism
for trading in the wholesale market. The research challenge lies in the
fact that wholesale players simultaneously trade on 24 different wholesale
markets determined by the moment of electricity delivery which ranges
from 1 to 24 hours ahead. Namely, the variant Roth-Erev reinforcement
learning algorithm is used to coordinate wholesale bidding across differ-
ent markets by choosing among four implemented wholesale strategies.
The Power Trading Agent Competition is used to evaluate the perfor-
mance of different implementations of the adaptive bidding mechanism
as well as to benchmark adaptive bidding approach against single strat-
egy approach.

Keywords: smart grids, software agents, electricity wholesale market,
reinforcement learning, Power Trading Agent Competition

1 Introduction

Liberalization and decentralization of electricity markets has resulted in major
changes of their structure and dynamics, thus creating a regulated and compet-
itive market environment. To enable further improvements, most of traditional
power grids are introducing novel solutions based on information and communi-
cations technology (ICT), progressively transforming into systems called smart
grids that enable more efficient energy usage, better communication between en-
tities on the market as well as real-time balancing of energy supply and demand.
One of challenges for researchers in smart grids is to find mechanisms for putting
orders on the electricity wholesale market. This paper addresses raised challenge
by proposing an adaptive bidding mechanism for putting orders on the electricity
wholesale market. The research challenge is even more complex having in mind
that we consider market design where wholesale players simultaneously trade on
24 different wholesale markets determined by the moment of electricity delivery
which ranges from 1 to 24 hours ahead.

In particular, the wholesale market we consider represents an energy market
where agents (i.e., retail brokers) may engage in trading along with dedicated

Babic, Jurica; Podobnik, Vedran. 
Adaptive Bidding for Electricity Wholesale Markets in a Smart Grid. 
Proceedings of the Workshop on Agent-Mediated Electronic Commerce and Trading Agent Design and Analysis 
(AMEC/TADA 2014) @ AAMAS 2014 / Ceppi, S. ; David, E. ; Robu, V., Shehory O. ; Vetsikas, I.A., editor(s). 
Paris, France: International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 2014. 1-14. 



2 Adaptive Bidding for Electricity Wholesale Markets in a Smart Grid

wholesale players such as large energy producers (i.e., generation companies or
GenCos) which provide necessary bulk energy and market liquidity. Brokers are
able to trade for future delivery, i.e., between 1 and 24 hours in the future
where a slot (i.e., enabled timeslot) for every hour in the future is represented
as a different market. The wholesale market works as a periodic double auction,
meaning it enables almost real time trading by clearing the standing order books
once every simulated hour. The clearing process considers the order book of the
enabled timeslot, whose orders are used to construct supply and demand curves
and consequently to determine the clearing price for the enabled timeslot. Orders
are sent by the brokers and must include the information about offered price and
the amount of energy. Orders with positive amount of energy (i.e., order issuer
wants to buy energy) are considered bids, and those with negative amount of
energy (i.e., order issuer wants to sell energy) are considered asks. The clearing
process sorts bid orders from the highest to lowest price and ask orders from
lowest to highest price and determines the clearing price at the intersection of
the supply and demand curves. In case there is no intersection between curves,
the clearing price is set at the mean of the lowest bid price and the highest ask
price. Trades are made for all asks with prices below the clearing price and for
all bids with prices above the clearing price.

This paper proposes a mechanism based on the variant Roth-Erev reinforce-
ment learning algorithm for coordination of wholesale bidding across different
markets by choosing among four different wholesale strategies that are imple-
mented in the software agent. We use Power Trading Agent Competition (TAC)
[4] to evaluate the proposed adaptive bidding strategy system. Power TAC is
a competitive economic simulation of the smart grid that aims to provide an
insight into the structure and operation of electricity markets in a smart grid
environment [3]. In the Power TAC simulation competitors are brokers that pro-
vide electricity services to retail customers using tariff offerings, while managing
their customer portfolio by trading in a wholesale market.

The approach based on reinforcement learning was already studied by Power
TAC researchers. However, it was used for other parts of Power TAC system such
as retail market operations optimization [6] or customer modelling [9]. This paper
presents an experiment to evaluate the performance of different implementations
of the adaptive bidding mechanism as well. The evaluation process is designed
based on previous papers on the Power TAC benchmarking [2][5]. The paper
is organized as follows. Section 2 presents a mechanism for wholesale trading
based on Adaptive Bidding System (ABS). Afterwards, Section 3 explains the
experiment setup and methodology as well as it discusses the preliminary results
regarding ABS. Section 4 concludes the paper with the ideas for the future work.

2 Wholesale Trading Based on Adaptive Bidding System

The Adaptive Bidding System (ABS) is a trading module implemented within
the CrocodileAgent broker [1], a software agent developed by the University of
Zagreb for the annual Power TAC competition (www.powertac.org). The ABS
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is used for trading in the wholesale market. Fig.1 depicts a high-level architec-
ture of the proposed solution for trading in electricity wholesale markets. The
CrocodileAgent broker interacts with the Power TAC environment by using:

– Retail module to interact with the retail market. This is the module responsi-
ble for managing customer portfolio (e.g., new tariff offerings) and predicting
the expected energy load from its customers;

– Context repository for storing all relevant data from the environment such as
the retail context (e.g., public and private tariff offerings, retail transactions),
game context (e.g., bank transactions, weather information) and wholesale
context (e.g., cleared trades, order books);

– Wholesale module with ABS for trading energy on the wholesale market.

Essentially, the ABS may be conceived as a black box with two inputs: (i)
the expected amount of needed energy to be acquired, and (ii) historical data on
wholesale transactions and balancing transactions; and one output : a generated
order (i.e., a bid or an ask) which is sent to the wholesale market.
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Fig. 1. The CrocodileAgent broker interacts with the Power TAC environment.

Fig. 2 shows more details on the internal structure of the wholesale module.
Inside the black box there is the bucket master which performs following tasks:

– chooses the specific learning bucket depending on the time proximity;
– delegates the job to the selected learning bucket and most importantly;
– performs learning via embedded learning algorithm.

The time proximity is defined as the distance between the current timeslot
and the target timeslot (i.e., the timeslot for which the order is made). A learn-
ing bucket is an artefact responsible for the range of proximities and it has (i)
strategy portfolio with four distinct wholesale strategies (hereinafter: strategies)
and (ii) knowledge repository with knowledge used in the learning process (i.e.,
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propensities and probabilities for the strategies). Within the ABS there can be
1, 2, 3, 4, 6, 8, 12 or 24 learning buckets, chosen in the initial setup. Finally, the
performance reporter receives the performance data about the ABS and forms
a log which can be processed and analysed.
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Fig. 2. Building blocks of the wholesale module.

2.1 Learning Buckets

As introduced in the previous subsection, learning buckets are responsible for the
actual order formation and for dispatching the order onto the wholesale market.
The main idea behind learning buckets is the fact that, under most scenarios,
a reasonable broker might want to play different strategies depending on the
remaining chances (i.e., timeslot proximities). Adaptable broker behaviour in
trading scenarios is indeed achievable with the use of learning algorithms. How-
ever, by introducing learning buckets in the system the CrocodileAgent broker is
also able to perform trading depending on the timeslot proximity and to track the
learning experience within the corresponding timeframe supported by a learning
bucket. Therefore, the proposed ABS performs two-dimensional optimization of
a bidding behaviour by taking into account both strategy execution outcomes
and the timeframe when the strategies where performed.

Essentially, a learning bucket B is defined by its starting index bucketIndex,
size bucketSize and the set of wholesale strategies (i.e., strategy portfolio SP).
Fig. 3 shows the example of the ABS configuration where there are three learning



Adaptive Bidding for Electricity Wholesale Markets in a Smart Grid 5

 

Bucket B1 Bucket B2 Bucket B3

1   2    3    4   5   6    7    8   9  10  11 12 13  14 15 16  17 18 19  20  21 22 23  24proximities

current timeslot

Fig. 3. Example configuration with three learning buckets B1, B2, B3 where each of
them is responsible for a particular timeframe.

buckets: B1, B2 and B3. Since there are total of 24 proximity timeslots, the
bucketSize of each is eight. Each of them is responsible for only a portion of
timeslot proximities. Learning buckets B1, B2 and B3 have startIndexB1 =
1, startIndexB2 = 9, startIndexB3 = 17, respectively. The figure also shows
how timeslot proximities are mapped to an ordered set of timeslots. Since the
observation point is set at the timeslot 360, the last-minute trading timeslot
proximity (i.e., proximity equals to one) is for timeslot 361 and it has a value of
1. Similary, the furthest timeslot opened for trading is for the timeslot 385 and
the corresponding timeslot proximity equals to 24. Finally, the graph line shows
the energy load for each of timeslot proximities which emerges from customers
(i.e., producers and consumers) within the broker’s portfolio and it is one of
inputs for a wholesale order generation.

2.2 Wholesale Strategy Portfolio

In the context of ABS, the strategy is a policy for making the final order to
be placed on the wholesale market by using the baseline price pricebase(t) and
baseline energy energybase(t).

The baseline price pricebase(t) for the timeslot t is retrieved from the context
repository and it is modeled to the weighted daily mean price by (i) determining
the hour of the day of the input timeslot t; and by (ii) considering trades of
surrounding hours. For example, if the context repository determines that the
timeslot t represents 10:00AM, the pricebase(t) will consider recent trades which
happened at 9:00AM, 10:00AM and 11:00AM. In attempt to capture the volatile
nature of daily price trends, the context repository will only remember the most



6 Adaptive Bidding for Electricity Wholesale Markets in a Smart Grid

recent trades for the hour of the day, specified by the size of repository’s sliding
window.

The baseline energy energybase(t) for the timeslot t is retrieved from the
retail module which calculates the expected energy load for customers from the
broker’s customer portfolio at the given timeslot t. The retail module updates the
energy usage data for each customer type (e.g., households or office complexes)
by exponential smoothing.

There are four wholesale strategies available within the CrocodileAgent ABS
which cover some of typical behaviour patterns on the wholesale market.

Neutral Strategy
As the name implies, the Neutral strategy is a risk-averse strategy which
attempts to buy or sell the same amount of energy as the baseline energy
energybase at the price which closely follows the baseline price.

Penny Blue Chip Strategy
The Penny Blue Chip strategy (or Penny strategy in short) is an exploitation
strategy which buys cheap (i.e., under the baseline price pricebase) and more
than needed energy. In case the broker has an excess of energy, the strategy
will attempt to sell all capacities at the price significantly higher then the
baseline price (i.e., the expected mean price).

Stingy Strategy
The Stingy strategy is a more extreme version of the Penny strategy because
it attempts to buy energy at the price lower than the price offered by the
Penny strategy and sell the excess energy at the price higher than the price
offered by the Penny strategy. This strategy promises lucrative payoffs but
at the higher risk of not making a trade than other strategies within the
strategy portfolio.

Generous Strategy
As the name implies, Generous strategy is a last-resort strategy which buys
at the price higher than the price offered by Penny strategy and sells at
the price lower than the baseline price. This strategy may be used when the
agent is running out of options (i.e., agent did not secure a trade) in the final
timeslot proximities.

Table 1. Multiplication factors of baseline price and energy for selling orders.

Selling policy Buying policy
Strategy Price Energy Price Energy

Penny 1.6 ± 0.1 1.0 0.8 ± 0.1 1.6 ± 0.1
Neutral 1.0 ± 0.1 1.0 1.0 ± 0.1 1.0
Stingy 1.9 ± 0.1 1.0 0.5 ± 0.1 1.1 ± 0.1
Generous 0.6 ± 0.1 1.0 2.5 ± 0.2 1.0

Strategies also check whether there was a price escalation by checking the
outcome of the last corresponding order. If the last order failed to trade, the
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strategy will check whether the baseline price is better (i.e., more likely to trade)
than the last order. If not, the baseline price will be adjusted to be closer towards
the last trade’s price. Table 1 provides details on how strategies modify the
baseline price and baseline energy and consequently generate final orders for
placing on the wholesale market. Although the ABS contains only four strategies,
its modular design and extendibility enables the support of fine-grained bidding
behaviour such as those proposed by authors in [10].

2.3 Variant Roth-Erev Reinforcement Learning Algorithm

The variant Roth-Erev reinforcement learning algorithm (VRE RL algorithm)
[8] is the modification of the original Roth-Erev algorithm which was proposed
by Albin Roth and Ido Erev [7]. The main idea of the algorithm is to mimic the
way human subjects behave under the given scenario. The VRE RL algorithm
improves the original Roth-Erev algorithm by (i) enabling the agent to learn in
case the action taken has zero payoff, and (ii) keeping probabilities of actions
with nonnegative values even in case rewards can take on negative values.

In the context of the proposed ABS, the action is considered as the wholesale
strategy, i.e., a policy for preparing an order to be placed on the wholesale market.
The VRE RL algorithm assigns equal initial propensity value q(0) to each of the
N actions of the learning agent for t = 0. The action propensities at t+ 1 based
on the action j, chosen at time t are given with the following expressions:

qj(t+ 1) =

{
(1− r)× qj(t) + πk(t)× (1− e), if j = k

(1− r)× qj(t) + qj(t)×
e

N − 1
, if j 6= k

(1)

where e is the experimentation parameter, r is the recency parameter and k is
the chosen action.

The experimentation factor e is used to comprise the influence of learn-
ing exploration and exploitation. A higher experimentation parameter increases
propensity values for actions not chosen at time t. Consequently, probabilities
of actions not chosen will also increase. This parameter also works as a counter-
measure for premature fixation on the chosen action in cases where the chosen
action gets a positive reward at the early stage of the experiment.

The recency factor r controls degree by which the agent will neglect the past
experiences obtained over the experiment. A higher recency factor will cause
greater discount on propensity values of actions accumulated in the past. This
feature is important in highly dynamic systems where old rewards may become
irrelevant.

The propensity value qj(t) for action j at time t is mapped to choice proba-
bility pj(t) with the use of Gibbs-Boltzmann distribution:

pj(t) =
e

qj(t)

τ

N−1∑
i=o

e

qj(t)

τ

(2)
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where τ is the Boltzmann cooling parameter, used to control mapping of action
propensities to probabilities (e.g., for τ →∞ action probabilities will be uniform
1/N).

The proposed ABS uses VRE algorithm to learn what action (i.e., wholesale
strategy) is the most appropriate to play on the wholesale market by using the
reward function πk(t).

2.4 Reward Function

The wholesale strategy j chosen at time t is rewarded with the reward function
πk(t) defined as:

πk(t) = ρ× µb × ω(t) + ξb(t) (3)

where ρ is the factor which controls the effect of the balancing process in the
reward, µb is the responsibility factor for bucket b, ω(t) is the balancing ratio
and ξb(t) is the wholesale bidding performance.

Each bucket b has the responsibility factor µb which discounts its balancing
cost responsibility:

µb =
1

γib−1
(4)

where γ is the parameter which controls how the responsibility factor is
distributed across buckets and the ib is the ordinal number of a bucket b. As
a consequence, this factor steers ABS towards minimizing the balancing cost
for close proximities and optimizing wholesale bidding performance (i.e., buying
cheaply and selling expensively) for far proximities.

The balancing ratio ω(t) is the normalized ratio between balancing energy1

and distributed energy2 given by:

ω(t) =


balThreshold− balRatio(t)

1− balThreshold
, if balRatio(t) ≥ balThreshold

1− balRatio(t)

balThreshold
, if balRatio(t) < balThreshold

(5)

where balRatio(t) is the ratio between balancing energy and distributed energy
at time t:

balRatio(t) =
|balancingEnergy(t)|
distributionEnergy(t)

(6)

1 The balancing energy is defined as the final supply/demand imbalance in the ob-
served timeslot.

2 The distributed energy is defined as the total energy delivered for the observed
timeslot. It is the sum of the positive net load of the broker’s customers and the
positive net export of energy through the wholesale market.
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and balThreshold is the maximum threshold for balRatio(T ). If the balRatio(t)
is higher than the maximum balancing threshold, the function will punish the
action with negative rewards, otherwise the action is awarded with the positive
reward.

The wholesale bidding performance ξb is introduced to prevent ABS from
targeting the energy balance at all cost (i.e., engaging into destructive wholesale
bidding):

ξb(t) =
buyRatiob(t)× buyEnergyb(t) + sellRatiob(t)× sellEnergyb(t)

buyEnergyb(t) + sellEnergyb(t)
(7)

where buyRatiob(t) and sellRatiob(t) are the bucket’s weighted mean buying
price and weighted mean selling price for timeslot t, normalized over weighted
mean wholesale price. The buyEnergyb(t) and sellEnergyb(t) are the bucket’s
total energy bought and sold for the timeslot t. The aforementioned mean prices
are weighted based on the energy sold or bought. Since buyEnergyb(t) and
sellEnergyb(t) may be sensitive to outliers (e.g., peaks in buying prices), we
use the following sigmoid function

S(x) =
2

1 + exp−x
− 1 (8)

to squash the values of buyEnergyb(t) and sellEnergyb(t) to acceptable [-1,1]
range.

3 Adaptive Bidding System Evaluation

3.1 Experiment Setup

The preliminary results on the performance of the ABS are based on the data
obtained from the Power TAC simulation environment. The evaluation process
uses the following artefacts:

– Power TAC simulation platform for conducting experiments;
– ABS-enabled CrocodileAgent broker;
– CrocodileAgent brokers without ABS and named according to the strategy

they use (e.g., Generous broker is the CrocodileAgent broker which only uses
the Generous strategy);

– Extended version of the Power TAC Logfile Analysis Database3 (PLA) for
collecting both simulation data (e.g., market transactions and cash balances)
and ABS-related data (e.g., bucket reportings) from experiments.

The experiment set includes scenarios where the ABS-enabled CrocodileAgent
with the bucket sizes of 1, 8 and 24 compete in:

3 The original version of the PLA database is developed by Markus Peters, Rot-
terdam School of Management, Erasmus University. The software is available on
http://bitbucket.org/markuspeters/pla.
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– Three players game against the broker with one of fixed strategies and the
default broker;

– Five players game against all brokers with different fixed strategies and the
default broker.

Table 2. Adaptive Bidding System configuration parameters used in experiments.

Parameter Value

r 0.1
τ 1.0
e 0.2

balancingThreshold 0.15
ρ 2
γ 1.05

Each of scenarios was run twice and its duration was scheduled to last be-
tween 1000 and 1100 timeslots4. Regardless of the bucket size, the ABS-enabled
agent used the same learning parameters listed in Table 2. It is important to
note that those parameters were determined beforehand in a trail and that an
optimality study of those parameters are beyond the scope of this paper.

3.2 Key Performance Indicators

Key Performance Indicators (KPIs) for balancing, wholesale and cash perfor-
mances are used for the evaluation of the ABS. The exact summary values of
KPIs are calculated against all data obtained from the set of experiments and
they can be found later in Table 3 and Table 4.

Mean Balancing to Distribution Ratio The mean balancing to distribution
ratio (µBD(b)) is a metric which shows how did the agent b perform the balancing
process in all experiments. This is an important KPI for the ABS since, according
to the reward function πk(t), the primary objective of the ABS is to minimize
the energy imbalance while keeping the cash flow on the wholesale market within
reasonable limits (i.e., buys under and sells over the mean price). The lower the
µBD(b), the better the balancing performance of the broker is.

Mean Cash The mean cash µcash(b) is the mean final cash balance agent b
obtained per experiment. The greater the value, the more successful the agent
is. It is important to notice that the majority of positive cash flow comes from
the retail module which is out of the scope of this paper. However, this KPI
provides a hint on how did wholesale activities influence the final outcome of the
experiment.

4 The duration of the experiment in Power TAC is not a fixed number. This prevents
agents from scheduling unrealistic moves at the very end of the experiment.
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Weighted Mean Buying and Weighted Selling Prices The weighted mean
buying µbuyPrice(b) and selling prices µsellPrice(b) provide good measurement on
how much money did the agent b lose or gain per wholesale transaction. Those
KPIs are used to determine whether the agent is paying too much for a good
balancing ratio µBD(b) or why the agent is not able to keep the balancing cost
under control (e.g., due to low buying orders). Mean values are weighted based
on energy bought or sold, meaning that transactions with the low amount of
traded energy have less influence on the resulting mean price and vice versa.

Mean Buying and Selling Energy The mean buying energy µbuyEnergy(b)
and selling energy µsellEnergy(b) tell how much energy did the agent b buy
or sell per a wholesale transaction. Those KPIs provide additional clarification
about agent’s wholesale activities. For example, the low mean buying energy
µbuyEnergy(b) might prove that the agent’s policy of using low mean buying
price µbuyPrice(b) did not pay off since it did not secure enough trades.

3.3 Results and Discussion

The previous subsection introduced six KPIs which were used for the evaluation
of the ABS. This subsection offers a discussion of the results by examining each
of the KPIs. Table 3 and Table 4 show calculated values of KPIs based on
data from experiments. The values are considered for the following agents which
participated in experiments:

– ABS24bs - the ABS-enabled CrocodileAgent which has one bucket with the
size of 24;

– ABS8bs - the ABS-enabled CrocodileAgent which has three buckets with the
size of 8;

– ABS1bs - the ABS-enabled CrocodileAgent which has 24 buckets with the
size of one;

– Default broker - the embedded broker with the simple behaviour on the retail
market and wholesale market;

– Generous - the CrocodileAgent equipped with the Generous strategy;
– Neutral - the CrocodileAgent equipped with the Neutral strategy;
– Penny - the CrocodileAgent equipped with the Penny strategy;
– Stingy - the CrocodileAgent equipped with the Stingy strategy.

Results on µBD show that ABS-enabled agents, regardless of their bucket
sizes, outperform agents which use Penny strategy and Stingy strategy in the
balancing process. This is expected since both strategies try their best to buy
the needed energy at the much lower price than the mean wholesale price. They
will also attempt to sell the excess of energy at the much higher price than the
price other agents are willing to buy for and thus many of their orders will be left
unmatched. The Default broker was consistently losing the majority of customers
and therefore it had only a limited impact on the rest of the market. The agent
equipped with Generous strategy performed best during the balancing process.
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Table 3. Key Performance Indicators for balancing and cash performance.

Agent µBD µcash[ke]

ABS24bs 0.23 2,778
ABS8bs 0.24 1,927
ABS1bs 0.23 2,828
Default broker 0.37 9,6
Generous 0.22 1,920
Neutral 0.23 2,289
Penny 0.55 1,899
Stingy 0.71 1,292

Table 4. Key Performance Indicators for wholesale activities.

Agent µbuyPrice

[e/MWh]
µsellPrice

[e/MWh]
µbuyEnergy

[MWh]
µsellEnergy

[MWh]

ABS24bs -42.15 26.53 5.05 -1.84
ABS8bs -41.25 25.93 4.00 -1.72
ABS1bs -42.79 26.80 5.51 -1.75
Default broker -36.95 19.56 12.15 -10.81
Generous -50.72 27.07 4.11 -1.46
Neutral -27.24 42.88 3.84 -1.59
Penny -23.63 37.76 1.93 -2.26
Stingy -21.14 38.18 1.47 -1.89

This is also expected since the Generous strategy buys expensive energy and
sells cheap energy. Therefore, its orders will be often matched and the agent will
achieve the objective of keeping the balancing ratio low. The agent equipped
with Neutral strategy is marginally better in the balancing process than the
ABS-enabled agents. However, since the Neutral agent is constrained with only
one strategy which closely follows the expected wholesale price, there is a serious
doubt on the agent’s performance in scenarios where the more diverse wholesale
behaviour is required.

Although the balancing ratio is the most important aspect of the ABS, the
good agent must also take care about its wholesale expenses. The weighted mean
buying prices µbuyPrice and weighted mean selling prices µsellPrice, along with
the mean energy bought µbuyEnergy and mean energy sold µsellEnergy provide
insights on wholesale activities. It is interesting to notice all ABS-enabled agents
are having similar mean prices for buying and selling orders. Those prices are
less favorable than prices offered by Neutral, Penny and Stingy agents, more
favorable than selling prices offered by Default broker agent as well as more
favorable than buying prices offered by the Generous agent. The biggest differ-
ence between ABS-enabled agents and other agents except Default broker is the
fact that, according to µbuyEnergy, ABS-enabled agents are able to procure more
energy then fixed agents. This in turn has an effect on the higher mean price
of energy for ABS-enabled agents. The Penny agent, on average, has the most
sales of energy due its buying policy (i.e., buying more energy than needed).
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Mean cash µcash is the final metric used to show how the wholesale per-
formance influence the overall agent’s energy business. Since the retail market
is the most lucrative place for making a profit in Power TAC, the µcash will
largely depend on the agent’s retail performance. The ABS-enabled agent with
the bucket size of eight failed to beat the majority of agents. The proof of this
are its values of µcash and µbuyEnergy which are lower than other’s ABS-enabled
agents. All this may suggest the ABS configuration with three buckets is not
the best way to setup the ABS-enabled agent. Still, it is encouraging fact that
ABS-enabled agents with bucket sizes of 1 and 24 scored the best, meaning that
adaptable bidding behaviour is better than fixed policy behaviour from compet-
ing agents. However, since the experiment setup has some limitations noted in
the next subsection, all this observations should be taken with caution.

3.4 Experiment Limitations

Although experiment results show the effectiveness of the ABS, the authors are
aware that the experiment setup has some limitations. First, the learning param-
eters of the ABS were chosen based on the results from other experiments not
described in this work. Therefore, the experiment set should include the scenario
with different learning parameters in order to present a rigorous analysis of their
effect on the ABS performance. Second, the accuracy of inputs for the ABS is not
measured. However, since ABS inputs (i.e., expected price and needed amount
of energy) are calculated with simple prediction methods, they most likely con-
tain noises which reflect the performance of ABS and thus the outcome of the
experiment. Third, scenarios include the ABS-enabled CrocodileAgent and fixed-
strategy brokers and therefore a more diverse scenarios with intelligent brokers
are needed in order to thoroughly evaluate the proposed solution. All things
considered, the evaluation part carried out in this work provide a preliminary
analysis of the ABS.

4 Conclusion and Future Work

This paper presents an adaptive bidding mechanism (i.e., Adaptive Bidding Sys-
tem, ABS) for putting orders on the electricity wholesale market. We used the
variant Roth-Erev reinforcement learning algorithm to coordinate wholesale bid-
ding across different markets by choosing among four implemented wholesale
strategies. Due to insufficient number of available agents in the official Power
TAC broker repository, the experiment setup included modified versions of the
CrocodileAgent. Specifically, all CrocodileAgent implementations used in the
experiment had the same functionality of the retail module, while the whole-
sale module differentiated and included both single strategy versions as well
as reinforcement learning enabled versions implemented through three differ-
ent versions of the ABS. The experiment results show that the ABS-enabled
CrocodileAgent outperforms the single strategy CrocodileAgent (i.e., without
reinforcement learning) having in mind presented experiment limitations.
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The future work will include: (i) determining optimal learning parameters,
(ii) improving the accuracy of ABS inputs by using more advanced prediction
methods, (iii) offering dynamic and more fine-grained strategies, and (iv) con-
ducting similar experiments with more diverse brokers.

References

1. Babic, J., Matetic, S., Matijas, M., Buljevic, I., Pranjic, I., Mijic, M., Augustinovic,
M.: The CrocodileAgent 2012: Research for Efficient Agent-based Electricity Trad-
ing Mechanisms. In: Special Session on Trading Agent Competition, KES-AMSTA
2012. Dubrovnik, Croatia (2012)

2. Babic, J., Podobnik, V.: An Analysis of Power TAC 2013 Trial. In: Trading Agent
Design and Analysis, Workshops at the Twenty-Seventh AAAI Conference on Ar-
tificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA. pp. 1–9 (2013)

3. Ketter, W., Collins, J., Reddy, P.: Power TAC: A competitive economic simulation
of the smart grid. Energy Economics 39, 262–270 (Sep 2013), http://linkinghub.
elsevier.com/retrieve/pii/S0140988313000959

4. Ketter, W., Collins, J., Reddy, P.P., Weerdt, M.D.: The 2013 Power Trading Agent
Competition (May 2013), http://papers.ssrn.com/abstract=2268852

5. Peters, M., Ketter, W., Collins, J.: Autonomous Agents in Future Energy Mar-
kets: The 2012 Power Trading Agent Competition. In: Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue,
Washington, USA. pp. 1298–1304 (2013), http://powertac.org/sites/default/
files/6242-30892-1-PB-2.pdf

6. Peters, M., Ketter, W., Saar-Tsechansky, M., Collins, J.: A reinforcement
learning approach to autonomous decision-making in smart electricity markets.
Machine Learning pp. 5–39 (2013), http://download.springer.com/static/

pdf/863/art\%3A10.1007\%2Fs10994-013-5340-0.pdf?auth66=1392229795\

_ad06fd4d8239e9b7291e102cf1f7a5ec\&ext=.pdf

7. Roth, A.E., Erev, I.: Learning in extensive-form games: Experimental data and
simple dynamic models in the intermediate term. Games and Economic Behav-
ior 8(1), 164–212 (Jan 1995), http://www.sciencedirect.com/science/article/
pii/S089982560580020X

8. Sun, J., Tesfatsion, L.: Dynamic Testing of Wholesale Power Market Designs: An
Open-Source Agent-Based Framework. Computational Economics 30(3), 291–327
(Aug 2007), http://link.springer.com/10.1007/s10614-007-9095-1

9. Valogianni, K., Ketter, W., Collins, J.: Smart Charging of Electric Vehicles Using
Reinforcement Learning. In: Trading Agent Design and Analysis, Workshops at
the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013,
Bellevue, Washington, USA. pp. 41–48 (2013)

10. Vytelingum, P., Cliff, D., Jennings, N.: Strategic bidding in continuous dou-
ble auctions. Artificial Intelligence 172(14), 1700–1729 (Sep 2008), http://www.
sciencedirect.com/science/article/pii/S0004370208000787




